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Abstract. We present the results of a study of thermal and quantum nucleation in an overlap
Josephson junction with a finite length. There is a critical lengthLc that marks the boundary
between nucleation with a uniform phase across the junction and nucleation that is concentrated
at one of the ends of the junction. In the thermal activation regime, it is shown to beLc = π3J ,
while at absolute zero, in the quantum tunnelling regime, it is given byLc = 2π3J /

√
5. Here,

3J is the effective Josephson penetration depth. The rates for nucleation at the ends of the
junction are given for junctions in the thermal activation regime for all lengths, and for junctions
undergoing quantum nucleation at absolute zero temperature for lengths less than or equal to
the critical length.

1. Introduction

Several years ago, we considered the quantum and thermal nucleation of the phase of an
overlap Josephson junction (JJ) when the size of the junction is much larger than the effective
Josephson penetration depth3J [1]. (See the next section.) The nucleation rates were given
for zero and high temperatures in terms of experimentally determined parameters. The very
large size of the junction that was considered was, strictly speaking, infinite, and nucleation
takes place at any point along the homogeneous junction. The results, therefore, gave us the
upper limit of the nucleation rate. On the other hand, we realize that, experimentally, the
larger the junction the more difficult it is to make the junction homogeneous. Therefore, it
would be interesting to study nucleation of the phase of a junction of finite size, especially
a junction of size about equal to the Josephson penetration depth.

For a finite junction, as was stated in reference [1], nucleation takes place predominantly
at the boundaries of the junction. The purpose of the present paper is to give results for
thermal and quantum nucleation at various lengths. An interesting feature is the existence
of a critical length at which there is singular behaviour: in particular, belowLc the phase at
nucleation is constant over the length of the JJ and the energy barrier for thermal nucleation
is strictly proportional to the lengthL of the junction. Just aboveLc, the phase at nucleation
is not uniform but is concentrated over a distance3J at one of the boundaries. In the thermal
activation regime, the critical lengthLc is given byπ3J [2]. In the quantum nucleation
regime at absolute zero, the critical length is given byLc = 2π3J/

√
5. For lengths

very much larger thanLc (describable by nucleation within an infinite JJ [1]), nucleation
at various positions along the interior of the JJ (‘interior nucleation’) can compete with
nucleation at the boundaries (‘boundary nucleation’). The lengthL0 above which interior
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2076 H P Simanjuntak and L Gunther

nucleation is more probable than boundary nucleation can be estimated as follows. In the
Arrhenius factor, the energy barrier for interior nucleationEIB is exactly twice as large as
the energy barrier for boundary nucleationEBB . Hence, the Arrhenius factor for interior
nucleation is exponentially smaller than that for boundary nucleation. However, the phase
space is much larger for interior nucleation than for boundary nucleation by a factor of
aboutL/3J . Hence the ratio of nucleation rates is

0I

0B
∼ L

3J

exp(−EBB/kT ). (1)

Setting0I equal to0B gives usL0 equal to3J exp(EBB/kT ). If EBB/kT = 23 and
3J = 10−3 cm, we obtainL0 equal to 100 km! Therefore, in a typical perfect sample,
boundary nucleation will predominate. However, in real, imperfect JJs, nucleation will
usually take place around a sample inhomogeneity within the interior.

We will present the results for low temperatures as well as high temperatures above
the crossover temperatureT0 between quantum and thermal nucleation. All of the
basic parameters are experimentally determinable in the well understood classical thermal
activation regime, so the predictions in the quantum tunnelling regime can be checked.
Our work extends the macroscopic quantum phenomena [3, 4] in the Josephson junction
systems.

2. Basic theory

We consider anoverlapJosephson junction with a finite lengthL, but small widthW � λJ ,
whereλJ is the Josephson penetration depth. The junction is current biased with a uniform
current densityJ and has a critical current densityJc [5]. The self-field effect causes the
phase of the junction to be space dependent [1, 5]. The imaginary-time action for the phase
ϕ of the junction at a finite temperatureT is given by [1]

S[ϕ(x, τ )] = W
∫ L/2

−L/2
dx
∫ βh̄/2

−βh̄/2
dτ

[
C
2

(
h̄

2e

)2(
∂ϕ

∂τ

)2

+ λJ
2

2

(
h̄Jc

2e

)(
∂ϕ

∂x

)2

+ U(ϕ)
]

+ 2h̄

L

∫ L/2

−L/2
dx
∫ βh̄/2

−βh̄/2
dτ
∫ βh̄/2

−βh̄/2
dτ ′ α(τ − τ ′)

× sin2
[{ϕ(x, τ )− ϕ(x, τ ′)}/4] (2)

where the potential energy is given as

U(ϕ) = −h̄Jc
2e
(cosϕ + µϕ) (3)

andµ ≡ J/Jc. β = 1/kBT andkB is the Boltzmann’s constant.e is the absolute value of
the charge of an electron and ¯h is Planck’s constant divided by 2π . C is the capacitance of
the junctionper unit area. The kernelα(τ) represents dissipation and is related to theI–V
characteristic of the junction, so it can be written in terms of experimentally determined
parameters [1, 6].

The functionα(τ) can be written as a Fourier series [1, 6]:

α(τ) = 1

βh̄

∞∑
n=−∞

αn exp

(
i
2πnτ

βh̄

)
. (4)
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In the following, we will be interested in the case of an unshunted junction, for which the
αn are effectively given in terms of experimentally determined parameters as [1, 6]

αn = − e
h̄2

∫ ∞
0

dV

π

V

(eV/h̄)2+ (2πn/βh̄)2 Idc(V ) (5)

whereIdc(V ) is the dcI–V curve of the junction. For lowT , we will use the approximate
form [6]

I = V

Rq
for 0< V <

21

e

I = V

RN
for V >

21

e

(6)

whereRq ≡ Rq(T ) is the temperature-dependent quasi-particle resistance andRN is the
normal resistance of the junction. 21 is the energy gap of the superconductors of the
junction, which are considered identical, for simplicity. With this approximation, we
have [6]

αn = −2nkBT

e2

[
1

Rq
cot−1

(
πnkBT

1

)
+ 1

RN
tan−1

(
πnkBT

1

)]
. (7)

For convenience, we define the dimensionless variablest ≡ �τ, y ≡ x/3J , and
` ≡ L/3J . � is the frequency of small oscillations about a minimum in the potential
energy and is given by

� =
(

2eJc
h̄C

)1/2

(1− µ2)1/4. (8)

The effective Josephson penetration depth3J is given by [1]

3J = (1− µ2)−1/4λJ . (9)

We define the reduced phaseφ as

φ ≡ µ

3(1− µ2)1/2
(ϕ − sin−1µ). (10)

We will be interested in the case of a current densityJ close to the critical current density
Jc, in which case in equation (2) we approximate sinx by x and the potential term by its
quadratic plus cubic terms (after removing a constant). With this approximation throughout
the paper, we replace equation (2) by

S[φ(y, t)] = S0

∫ `/2

−`/2
dy
∫ βh̄�/2

−βh̄�/2
dt

[
1

2

(
∂φ

∂t

)2

+ 1

2

(
∂φ

∂y

)2

+ u(φ)
]

+ 1

2
S0

∫ `/2

−`/2
dy
∫ βh̄�/2

−βh̄�/2
dt
∫ βh̄�/2

−βh̄�/2
dt ′ η(t − t ′) [φ(y, t)− φ(y, t ′)]2

(11)

where

S0 = 9(1− µ2)WλJh̄

4µ2

(
2h̄JcC
e3

)1/2

(12)

and

u(φ) = 1

2
φ2(1− φ). (13)
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η(t) is given by

η(t) = 1

βh̄�

∞∑
n=−∞

ηn exp(iνnt) (14)

whereνn ≡ 2πn/βh̄� and [1]

ηn = − 2nkBT

h̄WLC�2

[
1

Rq
cot−1

(
πnkBT

1

)
+ 1

RN
tan−1

(
πnkBT

1

)]
. (15)

3. Thermal nucleation

We start by considering thermal nucleation in a junction with finite length at temperatures
very much above the crossover temperatureT0 (see below) between quantum and thermal
nucleation. In this case, the phaseφ(y, t) is t-independent and the usual method of path
integration with the action of equation (11) gives the thermal nucleation rate atT � T0

as [1]

0 = `kBT0

h̄

[ ∞∏
n=1;α=0

λ0
nα

λnα

][∏
α=1

λ0
0α

λ0α

]1/2

×
[
β�S0

2π

∫ `/2

−`/2
dy

(
dφc(y)

dy

)2
]1/2

exp
[−(S[φc(y)])/h̄

]
(16)

where

S[φc(y)] = βh̄�S0

∫ `/2

−`/2
dy

[
1

2

(
d

dy
φc(y)

)2

+ u(φc)
]
. (17)

Note thatS[φc(y)]/h̄ is simplyEn/kT , whereEn is the energy of a nucleation taking place
at the top of the energy barrier in the function space of the phaseφ(y).

The equation of motion forφc(y) is given byδS[φc(y)] = 0, where it follows that

− d2

dy2
φc(y)+ φc(y)

(
1− 3

2
φc(y)

)
= 0 (18)

with the boundary conditions

dφc(y)

dy

∣∣∣∣
−`/2
= dφc(y)

dy

∣∣∣∣
`/2

= 0. (19)

The eigenvaluesλ0
n,α andλn,α in equation (16) are respectively

λ0
n,α = νn2− 2ηn + k0

α λn,α = νn2− 2ηn + kα n = 0,±1, . . . (20)

wherek0
α andkα satisfy[

− d2

dy2
+ 1

]
Q0
α(y) = k0

αQ
0
α(y) (21)[

− d2

dy2
+ 1− 3φc(y)

]
Qα(y) = kαQα(y). (22)

The crossover temperatureT0 is given by the equationν1
2−2η1−1= 0 (see reference

[6] and also below), so we obtain

1=
(

2πkBT0

h̄�

)2

+ 4kBT0

h̄WLC�2

[
1

Rq
cot−1

(
πkBT0

1

)
+ 1

RN
tan−1

(
πkBT0

1

)]
. (23)
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For kBT0� 21 (i.e., T0� Tc, whereTc is the critical temperature of the superconductors),
we can neglect theRq-term and also approximate tan−1 x by x. In this approximation, we
have

kBT0 ≈ h̄�
2π

[
1+ h̄

πWLCRN1

]−1/2

. (24)

We now need to find the solutionφc(y) for the exponent of the rate. There are two
solutions ofφc(y) in equation (18) and they represent the two possible nucleations at the
two respective boundaries of the junction located aty = ±`/2. These solutions are given
respectively by

φc(y) = φ1− (φ1− φ2)sn2

(
1

2

(
y − `

2

)
(φ1− φ3)

1/2

)
(25)

and

φc(y) = φ1− (φ1− φ2)sn2

(
1

2

(
y + `

2

)
(φ1− φ3)

1/2

)
(26)

where sn(x) is the Jacobi sine-amplitude function [7] and the constantsφi with φ1 > φ2 > φ3

are the roots ofφ2 − φ3 = E(`) with E(`) the constant of motion of equation (18). The
roots also satisfy the condition

2√
φ1− φ3

K(k) = ` (27)

whereK(k) is the complete elliptic integral of the first kind [7], andk is given by

k =
(
φ1− φ2

φ1− φ3

)1/2

. (28)

We have found the solutionφc(y) for a junction with finite length. On the other hand,
when the junction is small,φc(y) is y-independent. Therefore, there exists a critical length
that separates a small and a large junction. This critical length is given when the solution
φc(y) is uniform, in which caseφc(y) = φ1 = φ2 = 2/3. The reduced critical length̀c is
determined from equation (27) as

`c = π. (29)

The actual critical length of the junction is given byLc = π3J . Our goal now is to find
the rates of nucleation for various finite junction lengths.

Let us now consider the exponentS[φc(y)]. First, for a small junction with 06 ` 6 `c
the solutionφc(y) = φ1 = φ2 = 2/3 gives the exponentS

[
φc(y)

]
in equation (17) as

S
[
φc(y)

] = 2

27
βh̄�S0` = (1− µ2)5/4

6µ2

(
2h̄JcC
e3

)1/2

WL
h̄2�

kBT
= (2ε)3/2

3

h̄2Jc

ekBT
WL (30)

whereε ≡ 1− µ� 1. Thus, we have reproduced the result of reference [6].
Now, with the solution in equation (25) (or, equation (26)), we find the exponent

S[φc(y)] in equation (17) for a junction with lengthL > Lc. We obtain

S
[
φc(y)

] = βh̄�S0

[
E(`)

2
`+ π

8
(φ1− φ2)

2(φ1− φ3)
1/2 F

(
−1

2
,

3

2
, 3, k2

)]
(31)

where F(a, b, c, z) is the hypergeometric function [7]. This result reduces to equation
(30) when L = Lc. With the results in equations (30) and (31) we have plotted
the reduced exponentS[φc(y)]/βh̄�S0 as a function of` in figure 1. As ` → ∞,
S[φc(y)]/βh̄�S0→ 4/15.
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Figure 1. The reduced exponentS[φc(y)]/βh̄�S0 as a function of the reduced length`.

For the integral in the prefactor in equation (16), we obtain∫ `/2

−`/2
dy

(
dφc(y)

dy

)2

= π

8
(φ1− φ2)

2(φ1− φ3)
1/2F

(
−1

2
,

3

2
, 3, k2

)
. (32)

We have not been able to solve for the product of eigenvalues in equation (16) for general
L. However, we can deal with the case of thermal nucleation in a junction with length
about equal to the critical length (i.e.,L ∼ Lc) at high temperatures. In this case
φc(y) ∼ φmax= 2/3 whereφmax is the position of the maximum of the potentialu(φ).

For the action in equation (11), the method of path integration will give us the thermal
nucleation rate forT � T0 andL ∼ Lc as

0 = kBT0

h̄
exp[−2S0�`/27kBT ]

[ ∞∏
n=1;α=0

λ0
nα

λnα

][∏
α=2

λ0
0α

λ0α

]1/2

×
(
λ0

00

|λ00|
)1/2(

S0λ
0
01

2πh̄

)1/2
g√
2

exp(z)K1/4(z) (33)

whereKν(z) is the modified Bessel function [7]. Here, we also haveλ0
nα and λnα as in

equation (20) but now withφc(y) = φmax= 2/3, i.e.,

λnα = νn2− 2ηn +
(
πα

`

)2

− 1

{
n = 0,±1, . . .
α = 0, 1, . . .

(34)

λ0
nα = νn2− 2ηn +

(
πα

`

)2

+ 1

{
n = 0,±1, . . .
α = 0, 1, . . ..

(35)

In equation (33), we havez andg respectively as

z = λ01
2S0β�`

36(1/|λ00| − 1/2λ02)
= S0�`

18kBT

(
4π2− `2

8π2− 3`2

)(
π2

`2
− 1

)2

(36)

and

g = (λ01βh̄�`)
1/2

3(1/2|λ00| − 1/4λ02)1/2
= 2

3

(
h̄�`

kBT

)1/2(
π2

`2
− 1

)1/2( 4π2− `2

8π2− 3`2

)1/2

. (37)

Thus, equation (33) becomes

0 = kBT0

h̄
exp[−2S0�`/27kBT ]

[ ∞∏
n=1;α=0

λ0
nα

λnα

][∏
α=2

λ0
0α

λ0α

]1/2

×
(
S0

2πh̄

)1/2
[(

π

`

)2

+ 1

]1/2
g√
2

exp(z)K1/4(z). (38)
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Since λ01 → 0 when ` → `c, we can simplify equation (38) so that the thermal
nucleation rate forT � T0 andL ∼ Lc becomes

0 ≈ kBT0

h̄
exp[−2S0�`/27kBT ]

[ ∞∏
n=1;α=0

λ0
nα

λnα

][∏
α=2

λ0
0α

λ0α

]1/2

×
[(

π

`

)2

+ 1

]1/2 [
16S0�`

9kBT

(
4π2− `2

8π2− 3`2

)]1/4
0(1/4)

2
√

2π

× exp

[
S0�`

18kBT

(
4π2− `2

8π2− 3`2

)((
π

`

)2

− 1

)2
]

(39)

where0(x) is the Gamma function [7].
It remains for us to find the product of eigenvalues in equation (39). With the eigenvalues

in equations (34) and (35) it is difficult to calculate the product for general dissipation.
However, for low dissipation, which is usually the case, we again neglect theRq-term in
ηn and approximate tan−1 x with x so that the product overn gives us[ ∞∏
n=1;α=0

λ0
nα

λnα

][∏
α=2

λ0
0α

λ0α

]1/2

≈ D

π

sinh(π/D)

sin(π/D)

sinh((π/D)
√
(π/`)2+ 1)√

(π/`)2+ 1

×
αc∏
α=2

[
sinh((π/D)

√
(πα/`)2+ 1)

sinh((π/D)
√
(πα/`)2− 1)

]
. (40)

Here we have

D ≡
(

1+ h̄

πWLCRN1

)1/2(2πkBT

h̄�

)
(41)

and we have introduced a cut-offαc on the product. The need for this cut-off is to
avoid the infrared divergence as a result of the breakdown of the model Lagrangian at
small wavelength [1]. This short wavelength is given by the coherence lengthξ of the
superconductors of the junction, so the cut-off is given by

αc = `

π

1

(2ε)1/4
λJ

ξ
∼ 1

(2ε)1/4
λJ

ξ
. (42)

The remaining product in equation (40) can now be computed numerically for a given set
of junction parameters.

4. Quantum nucleation

We now move on to the case of quantum nucleation in a junction with lengthL ∼ Lc
(see below) at low temperatures. It is difficult to solve the nucleation rate for arbitrary
dissipation and temperature. However, for low dissipation, which is usually the case, the
effect of dissipation is to renormalize the capacitance [1] to the undamped case, so we can
setη(t) ≡ 0 but replaceC by C∗ as [1]

C∗ = C + h̄

πRN1WL
. (43)

The method of path integration [8] will lead us to the quantum nucleation rate as

0 = �∗S0

2πh̄
exp(−S[φc(t)]/h̄)

[
`

∫ β ′/2

−β ′/2
dt

[
dφc(t)

dt

]2
]1/2



2082 H P Simanjuntak and L Gunther

× g√
2

ezK1/4(z)

[ ∏
n=0;α=0

λ0
nα

/ ∏
n=0;α=0

|λnα|︸ ︷︷ ︸
(n,α) 6=(1,0),(0,1)

]1/2

(44)

where β ′ ≡ βh̄�∗ with �∗ given by equation (8) but withC replaced byC∗, and the
parametersg andz are given below. The actionS[φc(t)] now becomes

S[φc(t)] = S0`

∫ β ′/2

−β ′/2
dt

[
1

2

(
dφc
dt

)2

+ u(φc)
]

(45)

andφc(t) is periodic (with periodβ ′) and satisfies the equation of motionδS[φc(t)] = 0,
which is like equation (18) but with the variabley replaced byt .

The eigenvaluesλ0
nα andλnα are given by [8]

λ0
nα ≡ γ 0

n +
(
πα

`

)2

λnα ≡ γn +
(
πα

`

)2 {
n = 0, 1, . . .
α = 0, 1, . . .

(46)

whereγ 0
n andγn and their corresponding periodic eigenfunctionsQ0

n(t) andQn(t) satisfy the
eigenvalue equations like those in equations (21) and (22) but with the variabley replaced
by t . In equation (44), we have used the notationλ00 and λ10 for the negative and zero
eigenvalues, respectively. We now have

z = λ01
2S0`

4h̄[P(β ′)]2(1/|λ00| − 1/2λ02)
(47)

and

g = (λ01`)
1/2

|P(β ′)|(1/2|λ00| − 1/4λ02)1/2
(48)

where

P(β ′) ≡
∫ β ′/2

−β ′/2
dt u′′′(φc(t))[Q0(t)]

3. (49)

The solution ofφc(t) for finite T is known [9]. At T = 0, φc(t) = sech2(t/2). For
T � h̄�∗/k ln 64∼ T0, the correction to the solution atT = 0 is exponentially small. We
will therefore use theT = 0 solution for such smallT , obtaining for the exponent at low
temperatures

S[φc(t)] = 8

15
S0`[1− 60e−h̄�

∗/kT ]. (50)

It is difficult to find the eigenvalues for arbitrary temperatures. However, with the
exponentially small correction to the exponent, we may now approximate the prefactor of the
rate with its value at zero temperature. In this case, the use ofφc(t) = sech2(t/2) givesλ00 =
−5/4 andQ0(t) = (15/32)1/2sech3(t/2), so we obtainP(∞) = −(105π/64)(15/32)3/2.
We also have

z = 4π2

21

(
32

15

)3
[(

π

`

)2

− 5

4

]2[
1− 1

2

(
4

5

(
2π

`

)2

− 1

)−1
]−1

S0`

h̄
(51)

and

g = 1

π

(
32

15

)2(5`

7

)1/2
[(

π

`

)2

− 5

4

]1/2
1− 1

2

[
4

5

(
2π

`

)2

− 1

]−1
−1/2

. (52)
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The critical length is obtained by settingλ01 = 0, which leads tò c = π/
√|λ00|. Thus

the critical length atT = 0 becomes

Lc = 2π√
5
3J . (53)

The quantum nucleation rate at low temperatures becomes approximately

0 ≈ 4�∗
(
S0`

2πh̄

)1/2

gK1/4(z) exp(z) exp(−S[φc(t)]/h̄)

×
[
(
√
(π/`)2+ 1 + 1

2)(
√
(π/`)2+ 1 + 1)

(
√
(π/`)2+ 1 − 1

2)(
√
(π/`)2+ 1 − 1)

]1/2

×
(√

(π/`)2+ 1 + 3

2

)
Q1/2 (54)

0 ≈ 2√
π
0(1/4)�∗

(
S0`

2πh̄

)1/2(
S0`

h̄ a

)1/4

exp(z) exp(−S[φc(t)]/h̄)

×
[
(
√
(π/`)2+ 1 + 1

2)(
√
(π/`)2+ 1 + 1)

(
√
(π/`)2+ 1 − 1

2)(
√
(π/`)2+ 1 − 1)

]1/2

×
(√

(π/`)2+ 1+ 3

2

)
Q1/2. (55)

S[φc(t)] is given by equation (50) and the factora is

a = 1

10

(
105π

64

)2(15

32

)3(
1− 5`2

32π2− 10̀ 2

)
(56)

and the factorQ is

Q =
αc∏
α=2

[
(2
√
(πα/`)2+ 1+ 1)(2

√
(πα/`)2+ 1+ 2)(2

√
(πα/`)2+ 1+ 3)

(2
√
(πα/`)2+ 1− 1)(2

√
(πα/`)2+ 1− 2)(2

√
(πα/`)2+ 1− 3)

]
(57)

whereαc is again the cut-off in equation (42). Keeping only the highest contribution from
the cut-off, we may approximateQ with

lnQ ≈ 6`

π
lnαc. (58)

A further temperature correction to the quantum nucleation rate at low temperatures
would be to multiply equation (55) (or equation (54)) by

1+ 30βh̄�∗ exp(−βh̄�∗).

5. Summary

We have calculated the thermal and quantum nucleation rates in a finite Josephson junction
for various lengths relative to the Josephson penetration depth. The results are given for low
and high temperatures relative to the crossover temperatureT0 between quantum and thermal
nucleation. The critical length for thermal nucleation isLc = π3J , andLc = 2π3J/

√
5 for

quantum nucleation atT = 0. It would be most interesting to study the quantum tunnelling
regime belowT0 for ` > `c. This problem is made difficult by the need to obtain the
bounce trajectory in both space and time. Finally, it should be recognized that while our
results have been discussed within the framework of nucleation along a Josephson junction,
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our results can be applied to other nucleation processes, such as nucleation of a magnetic
domain wall along a wire, by replacing some of the parameters and the potential.
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